skip to main content


Search for: All records

Creators/Authors contains: "Yang, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. CHEESEHub is a web-accessible, public science gateway that hosts containerized, hands-on demonstrations of cybersecurity concepts. There are now a plethora of services and tools designed to simplify modern gateway deployment and configuration such as commercial and academic composable cloud, the Terraform infrastructure as service tool, Kubernetes and Helm for container orchestration, as well as CILogon for simplified user authentication. Despite leveraging these tools, our day-to-day experience with deploying, upgrading, scaling, and extending CHEESEHub has not been entirely straightforward. We describe here some of the major challenges we have encountered in managing CHEESEHub and developing web-accessible demonstrations for the last five years. We hope this will help both new and seasoned gateway developers to effectively leverage these modern tools while avoiding these same pitfalls, while also providing starting points for discussions about gateway development and deployment best-practices. 
    more » « less
  2. Women make up only 28% of the workforce in STEM fields. It’s important to engage more girls in learning STEM; however, girls’ interests in STEM careers keep declining. It is well studied that the lack of sense of belonging underlies gender differences in STEM differentiation and achievement. Researchers have found that secondary girls’ sense of belonging declines as they age. To enhance secondary female students’ interests and self-concept in computing and engineering fields, the UNLV ITEST project sets the focus on engaging Girls in Ubiquitous Intelligence and Computing (GUIC) through a constructivist learning environment. In the GUIC Summer Camp, 40 secondary female students will take three-week training courses in Arduino & Internet of Things and Robotics Design and conduct two-week engineering project development in tiered teams co-mentored by STEM teachers and college student mentors. Based on the active learning method, the training courses are designed with interactive lectures and hands-on labs/activities. The engineering projects in ubiquitous intelligent systems are designed to connect computing & engineering concepts with real-world problems. Project demo results and students’ feedbacks have confirmed the effectiveness of the project activities in enhancing female students’ interests and self-efficacy in learning engineering and STEM. The unique constructivist learning environment is helpful in improving female students’ sense of belonging in STEM. 
    more » « less
  3. Seawater temperatures are increasing, with many unquantified impacts on marine diseases. While prolonged temperature stress can accelerate host-pathogen interactions, the outcomes in nature are poorly quantified. We monitored eelgrass wasting disease (EWD) from 2013-2017 and correlated mid-summer prevalence of EWD with remotely sensed seawater temperature metrics before, during, and after the 2015-2016 marine heatwave in the northeast Pacific, the longest marine heatwave in recent history. Eelgrass shoot density declined by 60% between 2013 and 2015 and did not recover. EWD prevalence ranged from 5-70% in 2013 and increased to 60-90% by 2017. EWD severity approximately doubled each year between 2015 and 2017. EWD prevalence was positively correlated with warmer temperature for the month prior to sampling while EWD severity was negatively correlated with warming prior to sampling. This complex result may be mediated by leaf growth; bigger leaves may be more likely to be diseased, but may also grow faster than lesions, resulting in lower severity. Regional stressors leading to population declines prior to or early in the heatwave may have exacerbated the effects of warming on eelgrass disease susceptibility and reduced the resilience of this critical species. 
    more » « less
  4. null (Ed.)
    Heating, ventilation and air-conditioning (HVAC) systems have been adopted to create comfortable, healthy and safe indoor environments. In the control loop, the technical feature of the human demand-oriented supply can help operate HVAC effectively. Among many technical options, real time monitoring based on feedback signals from end users has been frequently reported as a critical technology to confirm optimizing building performance. Recent studies have incorporated human thermal physiologysignals and thermal comfort/discomfort status as real-time feedback signals. A series of human subject experiments used to be conducted by primarily adopting subjective questionnaire surveys in a lab-setting study, which is limited in the application for reality. With the help of advanced technologies, physiological signals have been detected, measured and processed by using multiple technical formats, such as wearable sensors. Nevertheless, they mostly require physical contacts with the skin surface in spite of the small physical dimension and compatibility with other wearable accessories, such as goggles, and intelligent bracelets. Most recently, a low cost small infrared camera has been adopted for monitoring human facial images, which could detect the facial skin temperature and blood perfusion in a contactless way. Also, according to latest pilot studies, a conventional digital camera can generate infrared images with the help of new methods, such as the Euler video magnification technology. Human thermal comfort/discomfort poses can also be detected by video methods without contacting human bodies and be analyzed by the skeleton keypoints model. In this review, new sensing technologies were summarized, their cons and pros were discussed, and extended applications for the demand-oriented ventilation were also reviewed as potential development and applications. 
    more » « less
  5. null (Ed.)
  6. Context. Asteroid (22) Kalliope is the second largest M-type asteroid in the main belt and is orbited by a satellite, Linus. Whereas the mass of Kalliope is already well constrained thanks to the presence of a moon, its volume is still poorly known, leading to uncertainties on its bulk density and internal structure. Aims. We aim to refine the shape of (22) Kalliope and thus its diameter and bulk density, as well as the orbit of its moon to better constrain its mass, hence density and internal structure. Methods. We acquired disk-resolved observations of (22) Kalliope using the VLT/SPHERE/ZIMPOL instrument to reconstruct its three-dimensional (3D) shape using three different modeling techniques. These images were also used together with new speckle observations at the C2PU/PISCO instrument as well as archival images from other large ground-based telescopes to refine the orbit of Linus. Results. The volume of (22) Kalliope given by the shape models, corresponding to D = 150 ± 5 km, and the mass constrained by its satellite’s orbit yield a density of ρ = 4.40 ± 0.46 g cm −3 . This high density potentially makes (22) Kalliope the densest known small body in the Solar System. A macroporosity in the 10–25% range (as expected for this mass and size), implies a grain density in the 4.8–5.9 g cm −3 range. Kalliope’s high bulk density, along with its silicate-rich surface implied by its low radar albedo, implies a differentiated interior with metal contributing to most of the mass of the body. Conclusions. Kalliope’s high metal content (40–60%) along with its metal-poor mantle makes it the smallest known Mercury-like body. A large impact at the origin of the formation of the moon Linus is likely the cause of its high metal content and density. 
    more » « less